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An analogue of the Gibbs phenomenon is shown to hold for approximation by
periodic spline functions on uniform subdivisions. © 1991 Academic Press, Inc.

1. INTRODUCTION

In the nineteenth century it was observed that if a function f has a jump
discontinuity, the partial sums of its Fourier series are not sufficiently close
to f near the jump; they tend to overshoot fby a factor proportional to the
jump. In 1899, J. Willard Gibbs [1] gave a mathematical description of the
phenomenon that now bears his name.

Although Gibbs looked at a sawtooth function, his result may be
illustrated with a square wave. Let

{
-I

F(x) = 1: -1~x<O

O~x~1
(1.1)

and suppose 'n = 'n(F, x) is the trigonometric polynomial of the form
ao/2 + L~~ 1 (a r cos nrx + br sin nrx) that best approximates F in the norm
of L 2 [ -1,1]. (See Fig. 1.) Then

(X) 2 fnx (Sin t)lim 'n - = ,(x) =- -- dt
n--+oo n not

locally uniformly in x. (1.2)

Setting x = 1 yields the overshoot characteristic of the Gibbs phenomenon:

lim 'n (.!.) = ,(1) = 1.17898 .. · > 1 = F(O+).
n_ 00 n
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Some years ago, 1. J. Schoenberg conjectured to the author that an exact
analogue of (1.2) should hold for spline functions. The present paper shows
this to be the case for periodic splines with equal knot spacing.

Let T£k](X) be the periodic spline of degree k - 1 having knots

{-I, -1 +~, 1+~, ..., 1-~, I}
n n

(1.4 )

that best approximates F in the norm of L 2[ - I, I]. It is shown in
Section 3 that there exists a spline S [k J(x) of degree k - 1 with knots at the
integers such that lim,,_ 'cc' T ,~k](x!n) = S [kJ(X) locally uniformly in x.

The functions S I k I(x), k ::;; 8, are numerically computed in Section 4. If
F(O ) # F(O t), it is shown that they behave very much like the Gibbs
limiting function !(x); in particular, an overshoot is always observed.

The results of Section 3 are used in Section 5, where the behavior of
S[k1(X) as k -> ex: is investigated. Tn the light of previous results of
Schoenberg [6] it seems natural to expect the classical trigonometric case
to be approached uniformly; i.e., the Gibbs phenomenon for splines of high
fixed degree should look very much like the classical Gibbs phenomenon.
This suggests the following

Conjecture. Let F(x) be the square wave (1.1) andr(x) beclefined as in
(1.2). Then

640/66/3-8

lim S[kJ(X) = rex)
k_= uniformly in x. (1.5)
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Strong evidence for the validity of (1.5) is contained in Section 5, where
it is shown that for splines of odd degree k - 1

lim S [k](X) = ,(x),
k ..... 00

x = 0, ± 1, ±2, .... (1.6)

The only previous result I am aware of that has the flavor of (1.2) is
found in Golomb [2]. Assuming Un(x) is the periodic spline of degree
2k - 1 which interpolates to a sufficiently smooth periodic function G at the
knots (1.4), he shows there exists a constant 8k such that the 2kth
derivative of G may be calculated as the limit

2. PRELIMINARY RESULTS

We first must discuss a few elementary facts, all of which may be found
in [5] or [7].

Let {Xi} be a finite or infinite set of increasing real numbers where
a = inf(x i ) and b = sup(xJ If k is an integer ~2, S(x) is a spline function
of order k or degree k - 1 with knots {Xi} if

(i) The restriction of S(x) to [Xi-l, x;] is a polynomial of degree at
most k-1 and

(ii) SEC k
-

2(a,b).

If in addition the number of knots is finite and

(iii) S(v)(a)=S(v)(b),v=0,1, ...,k-2,

S(x) is called a periodic spline. A spline having knots only at the integers
is a cardinal spline.

Let

and define the k-fold convolution

-~~x~~

elsewhere

k~2 (2.1 )
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and associated cardinal spline

337

keven

kodd.
(2.2)

These functions, called cardinal B-splines, possess the following properties:

(i) The functions Bk(x - v), v = 0, ± 1, ±2, ..., form a basis
for the space of cardinal splines of order k; (2.3)

(ii) Bk(x) ~ 0 is an even function and has support on
[ -kI2, kI2]; (2.4)

(iii) f'=oo Bk(x) dx = 1; (2.5)

(iv) L~_ooBk(X-v)=1, oo<x<oo; (2.6)

(v) Bk(x) has Fourier transform lftk(t) = «2 sin(t12»lt)k; (2.7)

(vi) fC()ooBk(x-v)Bk(x p,)dx=B2k(V-Jl). (2.8)

For k = 2r an even positive integer, we consider the rational function

00

if>k(Z)= L Bk(v)z"
" -00

(2.9)

having only simple zeros ,A,i = A-;{k) satisfying

0>,A,1>,A,2>'" >,A,r I> -1>,A,r> ... >,A,k-2 (2.10)

and

(2.11 )

Thus 1/if>k(Z) is holomorphic in the annulus IA r - 11 < Izi < j)'rl and has
corrresponding Laurent expansion

Note that

and

_1__ ~ (k) v

if>k(Z) - v ='-:...
00

Wv z.

V= -00

(2.12)

(2.13)

v = 1, 2, 3, ....

The Wiener·Levy theorem implies the sequence convolution transformation
Bk : /00 -+ /00 defined by
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is inverted by

00

L Bk(v - Jl) Cl-' = dv ,
J..l= -(;()

1-'= -00

v=o, ±1, ±2, ...

v = 0, ± 1, ±2, .... (2.15)

We also note that

00

rPk(t)=ifJk(e it )= L ljIk(t+2nv),
V= -00

t real. (2.16)

It will also be convenient to discuss the "fundamental" spline Lk(x)
defined as the unique bounded cardinal spline of even order k satisfying the
interpolatory conditions

v=o

v = ±1, ±2, ....

Then for any bounded cardinal spline S(x) of even order k we may write
S(x) = L;'= -00 S(v) Lk(x- v). The fundamental spline has Fourier trans­
form representation

and decays for fixed k

(2.17)

exponentially as Ixl - 00. (2.18 )

3. EXISTENCE OF THE GIBBS SPLINE

The main result of this section is the following

THEOREM 1. Suppose FE Loco [ -1, 1] and both F(O +) and F(O -) exist.
Let Tn = T~k](F, x) be the periodic spline function of order k having knots
{v/n}~~ -n that best approximates F in the norm of L 2

[ -1,1]. Then there
exists a cardinal spline S(x) = S [k] (x) of order k satisfying

lim Tn (~) = S(x)
n ---'" 00 n

locally uniformly in x. (3.1 )

We shall refer to S(x) as the Gibbs spline of order k.
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For purposes of the proof, it is convenient to rescale F and Tn to
[ - n, n], i.e., define

Sn(X) = Tn (~) and -11 ~ X ~ 11. (3.2)

Note that both S" and fn may be extended by periodicity to (- (X), ex:).
Thus S" can be viewed as a cardinal spline with period 211 and by (2.3) has
a unique representation of the form

(3.3 )
\'-,"", -'X)

LB1MA 1. The sequence {c~} ~ '" defined by (3.3) satisfies the dOl/bly
infinite system of normal equations

,ex:

B2k(v-ll)c~=f:~= I j~(X)Bk(X-v)dx,
~= % .-:~

v=o, ±L ±2, ....

(3.4 )

Proof Let Bk(x)=I.;;'=_xBk(x-2JL11) be the central B-spline of
period 2n. Since <= c~ + 2JJ11' 11 = 0, ± 1, ±2, ..., by the unicity of periodic
spline approximation, (3.3) implies Sn(x)=I.~=l_1T<Bk(X-V). But as S"
minimizes the quantity

setting c/3< = 0 gives

=J" .(,,(X) Bk(x-v)dx,
-·-n

which after some manipulations becomes

v = -n, -n + 1, ..., 11 - 1,

;,=~?O [rcc Bk(x-Il) Bk(X-v)dX] c:
=Joo fn(x) Bk(x-v)dx, v=O,±1,±2,....

_. a::

Property (2.8) now yields (3.4). I
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Inverting (3.4) by means of (2.15) implies

LE"iMA 2.

c~=

co

" W(2k) rn
L \'-11- 11' v = 0, ±1, ±2, .... (3.5 )

Now define the function f* and sequences {Iv} and {cv} in the following
manner:

f*(x) = {F(O+),
F(O ),

x~O

x<o
(3.6)

and

fv=f'" f*(x) Bk(x-v)dx,
.., -::t:;.

v = 0, ± I, ±2, ... (3.7)

ex;

c,. = I W~2~~JI"
JS= Cf:,

It will shortly be shown that

v = 0, ± I, ±2, .... (3.8 )

00

S(x)= I cvBk(x-v)
y = ;x)

is the Gibbs spline of Theorem I.

LEMMA 3.

(3.9)

lim c~ = Cn
n_ co

v=o, ± 1, ±2, .... (3.10)

Proof Subtracting (3.8) from (3.5) and using (2.13) gives

a:;

c~-c,= I w~2k~[f:-f;']= I + I (3.11)
I'" -ex; II'-vl,;;R II' v!>R

where R is chosen so that L '1.1> R Iw;}k)1 < c. Since If: - f;,1 :s; 2 II f :10..) by
(2.5), (3.4), and (3.7), the second sum in (3.11) satisfies

I Iw~2~~llf:- fl'l <2c IIfl l
a:;.

11'- \'1 > R
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To handle the first sum, observe that for all x such that
v - R - k/2 ~ < x < v + R + k/2 and n chosen sufficiently large
If,,(x)- f*(x)1 = IF(x/n) F(O±)I <so Thus by properties (2.4) and (2.5)

Hence

f
V+R+kI2

~ <s,
v-R-kI2-1/2

Jl = v- R, v- R + 1, ..., v+ R.

v+R 00

L Iw;2~~11 f: - fl'l < s L Iw~2klJ.
I'~v-R 1'=-00

This establishes (3.10). I
Theorem 1 follows from Lemma 3, (2.6), (3.3), and (3.9) by noting if

Ixl ~ constant, then S(x) Sn(x) = L::' ~oo (cv - c~) Bk(x- v) is really a
finite sum.

Before ending this section, a result of independent interest should be
noted; at a jump discontinuity the best least squares approximants
converge to the midpoint of the jump.

THEOREM 2. Let F and Tn be as in Theorem . Then

Proof With no loss of generality assume F(O-) -F(O+). By
Theorem 1 it is sufficient to show S(O) =O. But this follows immediately by
applying the symmetry conditions (2.4 ), (2.14), and (3.6) in (3.7), (3.8), and
(3.9). I

4. CONSTRUCTION OF THE GIBBS SPLINE AND EXAMPLES

As yet we have not shown that a Gibbs phenomenon exists, the halImark
of which is the overshoot given in (1.3). This section investigates the
behavior of the Gibbs spline S [kJ(X) for orders k ~ 8. For each of these
cases an overshoot

max S[kJ(x»F(O+)
o<x<oo

is observed, i.e., a Gibbs phenomenon exists.

(4.1 )
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Before proceeding, we need the following

LEMMA 4. Let f/J 2n A;= A;(2r), and w~2r) be defined by (2.9), (2.10), and
(2.12), respectively. Then for r ~ 2

r-l

W(2r) = " A.Alvlv L.. 1 1 ,

;~1

where

v = 0, ± 1, ±2, ..., (4.2)

Proof From (2.12) it follows that

(4.3)

1 Z-v-l
w(2r)=-,h __ dz

v 2ni 'fc f/J 2r(z) , v=o, ±1, ±2, ..., (4.4 )

where the contour of integration is the unit circle Izi = 1. Since W v = w_ v ,

we may assume that v~ 0. Then the integrand of (4.4) has poles inside
Izi = 1 only at points A; with corresponding residues A~vl/A;f/J;r(A;),

i = 1, 2, ..., k - 1. Evaluating (4.4) by means of residues establishes the
lemma. I

To simplify computations, the following examples are worked for the
function (1.1); in particular F(°-)= -1 and F(°+ ) = 1. Note that as in the
proof of Theorem 2, S[k](X) is now an odd function.

EXAMPLE 1. THE PIECEWISE LINEAR CASE (k = 2). Since B2(x- v) =
B2(x - v) has positive or negative support if v is respectively strictly
positive or strictly negative and B 2(x) is an even function, we have

{

1,

fv = f~CXJ f*(x) B2(x - v) dx = 0,

-1,

The rational function

v= 1, 2, ...

v=o
V= -1, -2, ....

f/J
4
(z) = 1+4z + Z2

6z

has roots A= -2 +J3 and A-1. Hence Lemma 4 gives

W~4)=J3Alvl, v=O, ±1, ±2, ....
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Noting that S [2](v) = S(v) = Cv for piecewise linear cardinal splines and
applying (3.8) yields

S(v)=1-Jev, v = 0,1,2, ....

This completely determines S [Z](x); in particular

max S(x) = S(l) = 3 - J3 = 1.2679> 1 = F(O+).

EXAMPLE 2. THE QUADRAnc CASE (k = 3). For the even degree case we
have

Thus

and

v=2, 3, ...

v = -1,2, ....

Since

(
1+ 26z + 66zz+ 26z3 + Z4

</J 6 z)= 120zz

has roots 2 I= -0.043096, 2z = -0.430575, )~ \1, and )021, Lemma 4 implies

v=O, ±1, ±2, ...,

where Al = -0.252815 and A z = 3.094986.
Equations (3.8) are used to solve for cv , v=O, ±l, ±2, ..., which are

then plugged into (3.9):
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TABLE I

k oc l
S[kJ(OC

l
) fJI s [kJ(fJIl OCz S[kJ(ocz) fJ2 s [kJ(fJZ)

2 1.0000 1.2680 2.0000 0.9282 3.0000 1.0192 4.0000 0.9948
3 0.8234 1.1974 1.7209 0.9174 2.7014 1.0358 3.6993 0.9845
4 1.1502 1.2042 2.1707 0.8935 3.1739 1.0568 4.1746 0.9696
5 0.8690 1.1861 1.7802 0.8994 2.7327 1.0609 3.7139 0.9628
6 1.1256 1.1923 2.1785 0.8904 3.1964 1.0707 4.2028 0.9535
7 0.9019 1.1834 1.8244 0.8977 2.7735 1.0683 3.7443 0.9524
8 1.0952 1.1899 2.1569 0.8905 3.1881 1.0753 4.2033 0.9458

r 1.0000 1.1790 2.0000 0.9028 3.0000 1.0662 4.0000 0.9499

Letting ai' /3i' i = 1, 2, ..., be respectively the positive local maxima and
minima of S(x) in increasing order, we numerically calculate

a 1 =0.8234,

/31 = 1.7209,

a2 = 2.7014,

/32 = 3.6993,

S(ad = 1.1974

S(/31) = 0.9174

S(a 2 ) = 1.0358

S(/32) = 0.9845.

Corresponding values of S [kJ(X), 2:::;; k:::;; 8, are presented in Table I,
together with the Gibbs function r(x). All of these functions (except
S[2J(X)) have graphs as in Fig. 2, which is actually the graph of S[6J(X).
In each case the value of the overshoot corresponding to (1.3) is

S[kJ(ad= max S[k](X»1.
o<x< +00

FIG. 2. S[kJ(X).

(4.5)
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5. THE GIBBS SPLINE AS THE DEGREE ApPROACHES INFINITY
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The remainder of the paper is devoted to examining the behavior of the
Gibbs spline S[k](X) as k ~ 00. The central result is

THEOREM 3. Let k be an even integer and F(x) the square wave defined
by (1.1). Then

2 f"x (Sin t)lim S[k](X)=- - dt,
k~oo no. t

x=o, ±1, ±2, .... (5.1 )

The following result of Schoenberg [8] is crucial:

LEMMA 5. Let Lk(x) be the fundamental cardinal spline of even order k.
Then

(
. sm nx

lim L k x)=--
k~ 00 nx

This suggests using the basis

00

S [k](X) = '\' L ( )f...., Yvk X - V ,
V= ~CO

uniformly in x. (5.2)

(5.3 )

Hence (5.1) can be obtained by observing the behavior of y~k] as k -+ 00.

Since S [k](X) is now an odd function, it is only necessary to prove (5.1) for
x a positive integer.

LEMMA 6. The sequence (Yv)El OO defined by (5.3) satisfies

v = 0, ±1, ±2, ..., (5.4)

where

fv= foo f*(x)Lk(x-v)dx
-00

(5.5)

and

{
I,

f*(x) =
-1,

x~O

x<O
(5.6)

A(v-fl)= foo Lk(x-v) Lk(X-fl)dx.
-00

(5.7)
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Proof Recall from Lemma 1 of Section 3 the fact that Sn(x) is a best
approximation to fn(x); it follows that

foo Sn(x)Bk(x-v)dx= foo fn(x) Bk(x-v) dx,
-00 -00

which if we let n -+ 00 and use (2.4), (3.1), and (3.2) becomes

foo S[kJ(x)Bk(x-v)dx= foo f*(x)Bk(x-v)dx.
-00 ~OO

Since by (2.18), Lk(x) = L.:~ -00 cIlBk(x- fl) with exponentially decaying
coefficients (cll ) we obtain

foo S[kJ(x)Lk(x-v)dx= foo f*(x)Lk(x-v)dx,
-00 -00

which with (5.3) yields (5.4). I
The representation (2.17) allows us to write

A(v) =-.!.. foo (l/Jk(t))2 eivt dt,
2n -00 ¢Jk(t)

v = 0, ± 1, ±2, ...,

which by virtue of (2.7) and (2.16) becomes

(5.8)v=o, ±t, ±2, ....A(V)=-.!..r ¢J2k(t) eivtdt
2n -tr ¢Jk(t) ,

Using (2.10) we see that ¢J2k(t)/¢Jk(t) ~ c> 0 for all real t. Hence by
applying the Wiener-Levy theorem as in Section 2 the sequence convolu­
tion transformation (5.4) is inverted by

v=o, ±1, ±2, ..., (5.9)
Il= -00

where the sequence Q=Q[kJ(V) satisfies

v=o, ±1, ±2, ... (5.10)

00

L IQ(v)/<oo (5.11)
V= -00

and

Q(v) = Q( -v), v= 1, 2, 3, .... (5.12 )
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It is now necessary to discuss some asymptotic properties of QEk](V) as
Ivl -+ 00. The following estimates are quite similar to those obtained by
Schoenberg [7J for the approximation properties of exponential Euler
splines.

LEMMA' 7. If k ~ 2 and - n :(, t :(,n, then

(5.13)

Proof

<p~(t) -1 = <p~(t)- <P2k(t)
<P2k(t) <P2k(t)

1 00

<P2k(t) f', v~-oo ljJk(t + 27Cf!) !/tk(t +2nv)
f''1'V

and since <P2k(t) = L~= -00 !/t2k(t +2nv) is a sum of non-negative terms, we
have

Let [f!, vJ denote the (f!, v)th term of the. above series. If both fl, v#-O
and tE [ n, nJ, then It +2nvl = n Itin +2vl ~ n(2 Ivl 1) and

v= ±1, ±2, ...
v 0

If, say, fl = 0 then v#-O and for t E [ - n, nJ

I
tk I (Itl)k 1

[f!,vJ= (t+2nv)k:(, -;. (2/vl-l

Combining (5.15) and (5.16) and using k??;:; 2 gives

(
Itl)k

[f!, vJ:(, -; -(2-1f!-I---,--------::-·

which when used in (5.14) implies (5.13). I
Since by (5.10)

1f" (<P~(t) -1) eivl dt= {Q(V),
.. " <P2k(t) .0(0)-1,

(5.15)

(5.16)

(5.17)
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the symmetry of the above integrand, Parseval's identity, and the previous
lemma yield

(Q(O) -If+v=~oo (Q(V))2 = 2~ [n [::~?) -1Jdt
v#o

~~ (iC
2)2 fn (!-)2k dt~_iC_4 _

-..: 2iC 2 -n iC -..: 4(2k+ 1)"

This establishes the following

LEMMA 8. Let Q = Q[kJ(V) be as defined in (5.9). Then

and

IQ(O)-ll:s; ~.
2 y 2k+1

It should be noted that the better estimate

iC 2

IQ(0)-1 1 :S;2(k+1)

may be obtained by setting v= 0 in (5.17).
Returning to (5.9), we see by (5.11) and (5.12) that

(5.18)

(5.19)

00

S[kJ(v)=yv=.Q(O)fv+ L Q(Il)(fv-JJ.+fv+JJ.)'
JJ.~1

v=o, ±1, ±2, ....

(5.20)

This representation provides the motivation for the following lemmas.

LEMMA 9. The sequence (Iv) defined by (1.1), (5.4), and (5.5) is given by

f
lv1

fv=2sgn(v) 0 Lk(x)dx, v=O, ±1, ±2, .... (5.21 )

The proof is an easy consequence of (5.5), (5.6), and the symmetry of
Lk(x).

In view of the sum in (5.20) and the symmetry of S[kJ(X) it is only
necessary to bound IIv _II +Iv + pi for fl, v~ 1.
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CC

L: (fv-p+ fV+IY~24v2,
1"~1

v = 1, 2, 3, ... (5.22 )

Proof First suppose Jl ~ v. Then v- Jl ~ 0 and by (5.21) and the
Cauchy-Schwarz inequality

Jl = 1, 2, ..., v.

Similarly if Jl> v

J1 = v + 1, v + 2, ....

Hence

I [fv_l"+fV+I"]2~v·16.2v fcc (Lk(x))2dx+4·2v.2v fcc (Lk(x)fdx
1"= 1 0 0

~48V2tcc(Lk(X))2dX, v=I,2,3,.... (5.23)

In [3], it is shown that

LEMMA 11.

Applying (5.24) to (5.23) yields (5.22). I

k = 2r ~ 2. (5.24)
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We are finally in a position to prove Theorem 3. It is enough to show

lim S[kJ(V)=2IvSin(nx) dx,
k~oo 0 nx

v = 1, 2, 3, .... (5.25)

Using (5.20) we have

S[kJ(V) - 2 IV sin(nx) dx = (Q(O) -1)fv + (fv- 2 IV sin(nx) dX)
onx onx

00

+ L Q(J1)(fv~1' + fv+I')'
1'=1

(5.26)

v=0,±1,±2, ...

Applying the four previous lemmas to the first and third terms on the right
gives

and

Letting k--+ 00 in (5.26) and using (5.2) and (5.21) on the middle term
yields (5.25). I

In closing, it should be mentioned that representations other than (5.3)
are possible and may prove useful in investigating the conjecture (1.5). One
such is the following "wavelet" decomposition of S[kJ(X).

Define the exponentially decaying sequence

1 I" e
ivt

~k"J(-V)=-2 ~dt,
n ~"v' r/12k(t)

and corresponding cardinal spline

00

Kk(x)= L ~k"J(V)Bk(X-V).
v = -00
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Then the sequence {Kk ( x - v) }~ _00 forms an orthonormal basis in L 2

for the space of cardinal splines of order k (see [4]). Thus due to the
exponential decay of Kk(x), every function lof at most power growth
has a Kk-cardinal series representation L~~ -00 a"Kk(x - v), where
a v = So:Joo I(t) Kk(t - v) dt.

From the application of this to 1* and use of the argument of Lemma 6
it fonows that the Gibbs spline has Kk-cardinal series expansion
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